Electrophysiological model of intact and processed plant tissues: cell disintegration criteria.

نویسندگان

  • A Angersbach
  • V Heinz
  • D Knorr
چکیده

Frequency versus conductivity relationships of food cell system, based on impedance measurements as characterized by polarization effects of the Maxwell-Wagner type at intact membrane interfaces, are presented. The electrical properties of a biological membrane (represented as a resistor and capacitor) are responsible for the dependence of the total conductivity of the cell system on the alternating current frequency. Based on an equivalent circuit model of a single plant cell, the electrical conductivity spectrum of the cell system in intact plant tissue (potato, carrot, banana, and apple) was determined in a frequency range between 3 kHz and 50 MHz. The electrical properties of a cell system with different ratios of intact/ruptured cells could also be predicted on the basis of a description of a cell system consisting of elementary layers with regularly distributed intact and ruptured cells as well as of extracellular compartments. This simple determination of the degree of cell permeabilization (cell disintegration index, p(o)) is based upon electric conductivity changes in the cell sample. For accurate calculations of p(o), the sample conductivities before and after treatment, obtained at low- (f(l)) and high-frequency (f(h)) ranges of the so-called beta-dispersion, were used. In this study with plant cell systems, characteristic conductivities used were measured at frequencies f(l) = 3 kHz and f(h) = 12.5 MHz. The disintegration index was used to analyze the degree of cell disruption after different treatments (such as mechanical disruption, heating, freeze-thaw cycles, application of electric field pulses, and enzymatic treatment) of the plant tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Memantine on the Spontaneous Firing Frequency of Hippocampal CA1 Pyramidal Neurons in Intact and Alzheimer Rat Model: An Electrophysiological Study

Introduction: Memantine (MEM) is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically used for the treatment of Alzheimer disease (AD) in mild to severe conditions. The present study was conducted to investigate the effects of memantine on the spontaneous firing frequency of CA1 pyramidal neurons in rats caused by an electrical lesion of Nucleus Basalis Magnocellularis (...

متن کامل

Modulatory Effect of Baphia Nitida Dye in Toluene Induced Cytogenotoxicity, Hematotoxicity and Histopathology in Dermal Exposed Wistar Rats

Background: There is unprecedented increase in the processing and packaging of many plant materials into food supplements, herbal medicine, skincare and cosmetic products for human needs. Baphia nitida is used for topical skincare products. Toluene, a toxic aromatic solvent, is increasingly being used in the production of these skincare and cosmetic products in many industries. This study ass...

متن کامل

P 18: Alterations of Electrophysiological Activity of Cerebellar Pukinje Cells of Rats Under Harmaline Toxicity

Introduction: Beta-carboline alkaloids of P. harmala are shown to have immune-modulatory effects in several studies. Extracts of this plant have significant anti-inflammatory effect via the inhibition of some inflammatory mediators including PGE2 and TNF-α. In postmortem studies, structural alterations to the cerebellum have been recognized, including Purkinje cell loss being re...

متن کامل

Application of Morphological Method for Detection of Unauthorized Tissues in Processed Meat Products

Background: Nowadays, there is an increase of meat and animal carcass consumption worldwide. Due to the economic value of meat, the likelihood of using unauthorized tissue is possible in meat products. Based on these observations, the aim of the present study was to apply morphological method for detection of unauthorized tissues in processed meat products.  Methods: In this study, a to...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 1999